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Abstract: Owing to advances in many technologies, the high-speed flywheel energy storage system
(FESS), flywheel battery, has become a viable alternative to electrochemical batteries and attracted
much research attention in recent years. A self-organising fuzzy neural network controller is
presented for FESS to improve transient stability and increase transfer capability of power systems.
The main difference from a traditional control approach lies in the model-free description of the
control system and parallel computing capability. Simulation results from the Taiwan power
system (Taipower) show that FESS with the proposed controller has produced significant
improvement in power system performance.

1 Introduction

The Taiwan power system is medium sized and isolated.
With the rapid growth of high-tech industrial development
in Taiwan, there exist some special characteristics of the
system that include a longitudinal transmission network, a
large power deficit in the north, concentration of power
sources and demand, and heavy line loading [1]. Therefore,
reliable power supply has become one of the most
important considerations for Taipower. To solve the
problem, Taiwan Power Company (TPC) has to expand
the generation capacity and 345kV transmission lines.
However, the problems of environmental protection and
land acquisition make the installation of new generation
plants and transmission lines very difficult. It has become a
critical issue for Taipower to prevent catastrophic failures
and to improve the transient stability of the power system.

Transient stability is one of the most important
investigations in power systems. Power companies usually
operate power systems close to their thermal and stability
limits. But following sudden and large disturbances, a
power system may lose stability in the first swing, if it is not
equipped with proper transient control devices. In the past,
much research interest has been directed towards the
enhancement of the transient stability of power systems,
ranging from theoretical studies to advanced control
devices. Recently, many researchers have employed various
flexible AC transmission systems (FACTS) devices, such as
braking resistors, thyristor-controlled series compensators,
thyristor-controlled phase-angle shifters, unified power flow
controllers, and superconducting magnetic energy storage
(SMES) [1–4]. These devices have been shown to help
reduce the flows in heavily loaded lines and improve
stability of power systems.

Nowadays, FESS has become the most popular energy
storage system because of advances in power electronics,

materials and magnetic bearings [5]. The advantages of
FESS against traditional batteries and SMES are higher
power density, no hazardous chemicals, ease of checking the
charge, insensitivity to environmental conditions and long
life [5–11]. Modern FESS have been designed for a variety
of applications, their capability to store energy is approxi-
mately 1–500MJ and the peak power ranges from kilowatts
to gigawatts, with the higher powers aimed at pulsed-power
applications [5]. Today, power electronic devices and
control systems enable FESS to respond to system
disturbances within a few electrical cycles. Therefore, FESS
will continue to be most popular in power system control.

Because of the advantages of FESS, this paper proposes
using an FESS with a self-organising neural fuzzy controller
to enhance the transient stability of multimachine power
systems. The proposed controller integrates the ideas of the
fuzzy logic control and neural network structure into an
intelligent control system. In this NN structure, the input
and output nodes represent the input speed and acceleration
states, and output control signal, respectively, and the nodes
in the hidden layers function as membership functions and
fuzzy control rules. Initially, we set up the controller with a
set of coarse fuzzy control rules that are based on a simple
engineering knowledge concerning the controlled machine.
Then, the fuzzy control rules and input/output fuzzy
membership functions can be optimally tuned from or
adapted by the backpropagation learning algorithm accord-
ing to the control credit that is evaluated by a performance
index table (PIT). For the robustness considered, a multi-
layer neural network is used to learn the relation of
operating conditions and optimal parameters of the
controller. A Taipower tested data set is selected for
computer simulation to demonstrate the effectiveness of the
proposed methodology.

2 Power system model

Because of the high cost of practical tests, this paper only
uses the mathematical time simulation to prove the
proposed control scheme. The model of an FESS transient
control system is a nonlinear dynamic equation in multi-
machine power systems. An n-machine power system
model, including the effects of field flux decay, damper
windings, the automatic voltage regulator rotating (AVR),
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and the exciter concerning a centre of inertia (COI) rotating
reference frame is given below [4, 12]:

_yi ¼ ~oi ð1Þ

_~oi ¼
1

Mi
ðPmi � Pei � PfbiÞ �

1

MT
PCOI ð2Þ
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Vr max i if Vri4Vr max

Vri if Vr min i � Vri � Ve max i

Vr min i if VrioVr min i

8<
: ð10Þ

MT ¼
Xn

i¼1
Mi for i ¼ 1; 2; . . . ; n ð11Þ

where

subscript ‘i ’ relates to the ith generator

yi rotor angle of generator i with respect to the COI

~oi rotor speed of generator i with respect to the COI

M inertia constant

Pm mechanical power input

Pe real power output

Pfb input power in flywheel battery

PCOI COI accelerating power

Efd field applied voltage

E0d ; E0q d- and q-axis stator EMFs

Id ; Iq d- and q-axis components of armature current

Xd ; Xq d- and q-axis synchronous reactances

X 0d ; X 0q d- and q-axis transient reactances

Vr regulator output voltage

Vf output voltage of regulator stabilising circuit

Vt terminal voltage of generator

Ka regulator gain

Ke exciter constant related to self-excited field

Kf regulator stabilising circuit gain

Se exciter saturation function

T 0do; T
0
qo open circuit d- and q-axis time constants

Ta regulator amplifier time constant

Te exciter time constant

Tf regulator stabilising circuit time constant

Efess energy stored in flywheel battery.

In (2), the term Pfb represents additive real power control of
FESS for the ith generator, which is determined by the
proposed controller depending on the state of the generator.
Figure 1 shows the schematic structure of transient stability
control using FESS that includes a flywheel, a motor–
generator set and control electronics with a controller for
connection to an electric power system. The energy stored in
a rotating mass can be found from:

Efess ¼
1

2
Jo2 ð12Þ

The amount of energy storage increases linearly with the
moment of inertia J, and increases with the square of the
rotational velocity o. Because it is free from depth-of-
discharge effects, FESS can accept and deliver large
amounts of energy in a very short time [5, 9], which is a
very helpful characteristic for transient stability control of
power systems.

3 Proposed control system

Because of the nonlinear nature of transient stability
control, a self-organising neural fuzzy controller is presented
for FESS. The major difficulty in the design of a fuzzy
controller arises from the determination of fuzzy control
rules and input/output membership functions. Most
approaches are based on expert knowledge or existing
controllers, and the membership functions and/or fuzzy
rules are then modified when the design fails in the test [13].
Therefore, a lot of trial-and-error effort is always required,
making the design a time-consuming task. The proposed
methodology is to design self-organising fuzzy systems that
have capability to create the control strategy by learning.
The structure of the proposed self organising fuzzy neural
network controller (SONFC) is a combination of both the
neural network and self-organising fuzzy control techni-
ques. The fuzzy method provides a structural control
framework to express the input/output relationship of the
neural network that can embed the salient features of
computation power and learning capability into the fuzzy
controller.

generator Pei
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transformer

controller

generator/motor
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Fig. 1 Schematic structure of FESS
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3.1 Structure of overall control system
The overall structure of the proposed SONFC system is
shown in Fig. 2. It consists of: (i) a neural fuzzy control (NFC)
to control the plant, (ii) a performance index table (PIT) as an
instructor for learning the control strategy, (iii) three scaling
factors GS, GA, and GU to adjust the input/output values of
the controller into proper ranges, which are set at 1, 0.01 and
1, (iv) a multilayer neural network (MNN) to learn the
relations of operation conditions and optimal control para-
meters, and (v) a limiter to constrain the control action within
admissible limits. Typical input variables for transient stability
control are the rotor angle, angular speed, angular acceleration
etc. In this work, the shaft speed and acceleration of the
generator at each sample time are chosen to be input signals of
the controller. The target controller output P 0fb is the absorbed

power of FESS. The actual control signal Pfb can be obtained
through the limiter block to satisfy practical constraints.

To implement the proposed controller, the overall
operation algorithm is shown as follows:

Step 1: Set the admissible operation range of power system.

Step 2: Give a minimum operation point Peo.

Step 3: Calculate the stability equipoise point of the power
system.

Step 4: Set up the controller with a set of coarse fuzzy
control rules, as shown in Fig. 3.

Step 5: Tune the parameters of NFC by a backpropagation
learning algorithm according to the credits given in the
performance index table (PIT).

Step 6: Go to step 7, if the performance index per epoch is
less than a preset value, otherwise go to step 5.

Step 7: Save the optimal parameters of NFC.

Step 8: Set Peo¼Peo+0.05(p.u.).

Step 9: Go to step 10, if the Peo is larger than the maximum
operation point; otherwise go to step 3.

Step 10: Learn the relations of operating conditions and
optimal parameters of the controller by MNN.

Step 11: Terminate the learning process, when the mean
square error of the MNN is reduced to a preset value. Then,
use the trained controller directly to control the power system.

3.2 Topology of neural fuzzy controller
The topology of the proposed NFC, as shown in Fig. 4, is a
five-layer neural network-based fuzzy controller. Since two
input variables and one output variable are employed in the
present work, there are two nodes in layer 1 and one node
in layer 5. The nodes in layers 2 and 4 are term nodes that
act as membership functions to express the input/output
fuzzy linguistic variables. A bell-shaped function is adopted
to represent the membership functions, in which the mean
value and the variance will be adapted through the learning
process. The fuzzy set defined for input/output variables is
positive big (PB), positive medium (PM), positive small
(PS), zero (ZE), negative medium (NM) and negative big
(NB), which are numbered in descending order in the term
nodes. Hence, 14 nodes and 7 nodes are included in layers 2
and 4, respectively, to indicate the input/output linguistic
variables. Nodes in layer 3 represent the fuzzy control rule,
and there are 49 nodes in layer 3 to form a fuzzy rule base
for two linguistic input variables. The links of layers 3 and 4
define the preconditions and the consequences of the rule
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Fig. 2 Schematic structure of proposed control system
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nodes, respectively. There are two fixed links from the input
term nodes for each rule node. Layer 4 links encircled by the
broken line are adjusted in response to varying control
situations. The links of layers 2 and 5 remain fixed between
the input/output nodes and their corresponding term nodes.
In short, the proposed controller can adjust the fuzzy
control rules and their membership functions by modifying
layer 4 links and the parameters of the membership
functions for each node in layers 2 and 4. As a convenience
in notation, the following symbols are used to describe the
functions of the nodes in each of the five layers:

NET Lj
i net input value of the ith node in layer j

OLj
i output value of the ith nodes in layer j

mLj
i ; s

Lj
i mean and variance of bell-shaped activation

function of ith mode in layer j

Wij link that connects the output of the jth node in layer 3
the input to ith node in layer 4.

The schematic structure of each layer of NFC is as follows:

Layer 1: The nodes of this layer directly transmit input
signals to the next layer, that is

OL1
1 ¼ o0 ð13Þ

OL1
2 ¼ _o0 ð14Þ

Layer 2: The nodes of this layer act as membership
functions to express the terms of input linguistic variables.
For a bell-shaped function, they are:

NET L2
i ¼

OL1
1 ; for i ¼ 1; 2; . . . ; 7

OL1
2 ; for i ¼ 8; 9; . . . ; 14

�
ð15Þ

OL2
i ¼ e

�
NET L2

i
�mL2

i
sL2

i

h i2
; for i ¼ 1; 2; . . . ; 14 ð16Þ

The link weights in this layer are set to unity.

Layer 3: The links in this layer are used to perform
preconditioned matching of fuzzy rules. Each node has two
input values from layer 2. If the correlation-minimum
inference procedure is used here to determine the firing
strengths of each rule, then the output of nodes in the layer
is determined by the fuzzy AND operation. Thus, the
functions of the layer are:

NET L3
i ¼ min ðOL2

j ;O
L2
k Þ; i ¼ 7ðj� 1Þ þ ðk � 7Þ ð17Þ

OL3
i ¼NET L3

i ; i ¼ 1; 2; . . . ; 49;

j ¼ 1; 2; . . . 7; k ¼ 8; 9; . . . ; 14 ð18Þ

The link weights in this layer are also set to unity.

Layer 4: Each node in this layer performs the fuzzy OR
operation to integrate the fired rules leading to the same
output linguistic variable. Based on engineering knowledge
concerning the dynamic nature of the generator, 13 heuristic
fuzzy rules are designed in Fig. 3. The initial link weights
can be set according to the initial fuzzy rules. For example,
the weight of rule 4 that connects rule node 4 to the output
term node ‘PB’ is set at unity. Except for the weights
predetermined from the initial rules, the rest of layer 4 links
are all set to zero initially. Based on the simulation result,
starting with the good initial fuzzy control rules provides
much faster convergence in the learning phase. The

functions of this layer are expressed as follows:

NET L4
i ¼

X49
j¼1

WijOL3
j ð19Þ

OL4
i ¼ min ð1;NET L4

i Þ; for i ¼ 1; 2; . . . ; 7: ð20Þ

The link weight Wij in this layer indicates the probability of
the jth rule with the ith output linguistic.

Layer 5: The output node in this layer together with layer 5
links act as a defuzzifier of the NFC. The defuzzification
aims at producing a nonfuzzy control action that best
represents the possibility distribution of an inferred fuzzy
control action. The centre of area defuzzification scheme
can be simulated by:

NET L5
1 ¼

X7
j¼1

mL4
j sL4

j OL4
j ð21Þ

OL5
1 ¼ P 0fb ¼

NET L5
iP7

j¼1
sL4

j OL4
j

ð22Þ

where m and s can be viewed as the centre and the width of
the membership function. Hence the link weight in this layer
is mL4

j sL4
j .

3.3 Learning algorithm of proposed
controller
There are learning and operation phases to implement the
proposed control system. Based on simple engineering
knowledge concerning the controlled machine, we set up the
controller with a set of coarse fuzzy control rules. Then, the
parameters of the NFC are tuned to achieve good control
performance. For this purpose, a performance index table
(PIT) and its related lookup table, as shown in Fig. 5, were
developed. The performance of the controller in each
learning step is evaluated by the PIT, from which a credit is
assigned according to the deviation of the control response
from the desired response. It should be noted that the PIT is
developed based on the control objective. The zero elements
in the lookup table are in the desired response regions, and
the other regions indicate where corrective control needs to
be taken. The membership functions and fuzzy rules of the
NFC could be adapted online by the credit value using a
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supervised learning mechanism. For the kth learning step,
the required change DP 0fbðkÞ of the NFC can be defined as

DP 0fbðkÞ ¼ l� PI ½o0ðkÞ; _o0ðkÞ� ð23Þ
where PI [ � ] represents lookup values in the PIT, and l is a
learning constant, which is set at 0.005 in this study. Hence

the desired control action P 0dfb ðkÞ of the NFC can be

obtained by

P 0dfb ðkÞ ¼ P 0fbðkÞ þ DP 0fbðkÞ ð24Þ
The optimal parameters of membership functions and fuzzy
rules can be found by gradient-descent search techniques.
The error or energy function of the control system can be
defined by

E ¼ 1

2
P 0dfb ðkÞ � P 0fbðkÞ
� �2

ð25Þ

From (24) and (25), the minimisation of the error function
E results in guiding the controlled plant into the desired
response regions where the error function reaches a local
minimum. Then, the generalised delta-learning rule can be
used to solve the training task of the NFC to achieve energy
minimisation. In standard notation, the generalised delta-
learning rule can be expressed as

yiðk þ 1Þ ¼ yiðkÞ þ Z � @E
@Xi

� �
þ aDyiðkÞ ð26Þ

where yi is the parameter to be updated, and Z and a are the
learning rate and the gain of the momentum term, which

are set to 0.1 and 0.9, respectively. The error signal term dLi
i

produced by the ith neuron in layer j is defined as

dLi
i ðkÞ ¼ �

@E

@NET Lj
i

ð27Þ

Using (26) and (27), the learning rules of each layer are
derived below:

Layer 5: The error signal of the output node is

dL5
1 ¼ P 0dfb ðkÞ � P 0fbðkÞ

� �
ð28Þ

Layer 4:

1 The error signal of each node is

dL4
i ¼ dL5

1

mL4
i sL4

i

P7
j¼1

sL4
j OL4

j

 !
� sL4

i

P7
j¼1

mL4
j sL4

j OL4
j

 !

P7
j¼1

sL4
j OL4

j

 !2

for i ¼ 1; 2; . . . ; 7 ð29Þ

2 The mean and variance of each output membership
function are adapted by

mL4
i ðk þ 1Þ¼mL4

i ðkÞ þ ZdL5
1

sL4
i OL4

iP7
j¼1

sL4
j OL4

j

þ aDmL4
i ðkÞ ð30Þ

sL4
i ðk þ 1Þ ¼ sL4

i ðkÞ þ ZdL5
1

�
mL4

i OL4
i

P7
j¼1

sL4
j OL4

j

 !
� sL4

i

P7
j¼1

mL4
j sL4

j OL4
j

 !

P7
j¼1

sL4
j OL4

j

 !2

þ aDsL4
i ðkÞ for i ¼ 1; 2; . . . ; 7 ð31Þ

3 The weight between the ith output linguistic variable and
jth rule is updated by

Wijðk þ 1Þ ¼WijðkÞ þ ZdL4
i OL3

j þ aDWijðkÞ
for i ¼ 1; 2; . . . ; 7; j ¼ 1; 2; . . . ; 49 ð32Þ

Layer 3: In this layer, no parameter needs to be adjusted.
Only the error signal needs to be computed and propagated
backward, that is,

dL3
i ¼

X7
j¼1

Wijd
L4
j ð33Þ

Layer 2: The mean and variance of the input membership
function can be updated by

mL2
i ðk þ 1Þ ¼mL2

i ðkÞ

� Z
@E
@OL2

i
OL2

i

2ðOL1
j � mL2

i Þ
sL2

ið Þ2
þ aDmL2

i ðkÞ

ð34Þ

sL2
i ðk þ 1Þ ¼ sL2

i ðkÞ � Z
@E
@OL2

i
OL2

i

2ðOL2
j � mL2

i Þ
sL2

ið Þ3

þ aDsL2
i ðkÞ for i ¼ 1; 2; . . . ; 7; j ¼ 1; 2

ð35Þ

Layer 1: This layer is to distribute the input signal only. It is
not involved in the learning process.

The link connecting layers 4 and 3 can be deleted when the
weight is negligibly small or equals zero after learning
because this rule node has little or no relationship to the
output linguistic variable. The function of layer 1 is to
distribute the input signal only. It is not involved in the
learning process.

4 Simulations and discussion

4.1 Test conditions
The 345kV transmission system network of Taipower
system is shown in Fig. 6. The system has four main load
areas, North, Center, South and East. There will be, in
total, three 345kV double-circuit corridors from south to
north in Taipower in 2002. The peak demand on the
Taipower system reached 26296MW in 2001 and the
annual growth rate of peak demand is 1.7%. This system
consists of six nuclear units, 57 thermal units and 19 hydro
units, including ten pumped-storage units. There are two
nuclear plants in the north and one nuclear plant in the
south; the thrid nuclear plant is the biggest nuclear plant in
Taiwan. To test the proposed methodology, the main
disturbance is a three-phase short-circuit fault with various
clearing times in the generator bus of the second nuclear
plant. Unless otherwise stated, the FESS is installed only on
generator 2 of the second nuclear plant with the others
uncontrolled in the test cases. The lower limit and upper
limit of the FESS power are set between �0.5p.u. and
0.5p.u., respectively. To evaluate the performance of the
proposed controller a quadratic performance index J is
defined as:

J ¼
X200
k¼1

o2
i ðkÞ ð36Þ

In (36), the sampling time of system measurements is set at
0.01 s, thus there are a total 200 training patterns in each
learning process.
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4.2 Test results
To show the learning capability of the proposed controller,
consider a particular three-phase fault at generator 2 of
second nuclear plant with the fault cleared at 0.28 s. Figure 7
shows the curve of the performance index with respect to
the number of learning epochs. It indicates that only 35
epochs are required to reach convergence. The fast learning
time is due to the fact that the prior knowledge of the
controller is incorporated into the training process. Figures
8 and 9 show the dynamic responses of the controlled
generator between 1 and 40 epochs of learning. The results
obtained apparently show that the control performance can
be significantly improved through the learning process.

Figure 10 shows the absorbed power and energy of
FESS, the maximum power of the FESS is set in about
458MW (or 0.5p.u.). It is clear that the transient energy of

the power system has been stored in the FESS, and it will be
most useful for power flow control when the power system
recovers its stability. Figures 11 and 12 show the member-
ship functions of the input and output linguistic variables,
before and after the learning process. Obviously, some of
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the membership functions have been largely modified in
appearance.

To test the effect of the proposed controller with FESS,
the critical clearing time (CCT) with different capability of

FESS is shown in Fig. 13. The test results show that the
FESS capability is the most effective method for the
improvement of transient stability. It could be used to
enhance the CCT of the Taiwan power system.

To test the robustness of the trained controller, consider a
three-phase fault with different cleared times at generator
bus 2. The dynamic responses of generator 2 with fault,
cleared at 0.15, 0.2 and 0.25 s are shown in Figs. 14 and 15.
Note that, although the proposed controller was trained
from past control trends, it is still capable of yielding
satisfactory transient responses for different disturbances.
The rotor speed and terminal voltage of the controlled
generator will always return to stability.

5 Conclusions

The first application of FESS in the transient stability
control of power systems is presented. The FESS has been
shown as one of the most useful devices for transient
stability control of power systems, because the FESS can
accept and deliver large amounts of energy in a very short
time. Because of the nonlinear model in this control
problem, an efficient self-organising neural fuzzy controller
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to enhance the transient stability of a power system has
been presented. The control parameter of the proposed
controller can be optimally tuned from training examples by
the learning algorithm. As a result of the evolving symbiosis
of these new techniques, the proposed controller has shown
to be more adaptive and robust in responding to different
disturbances. To illustrate the performance and usefulness
of the proposed method, a series time simulation was also
conducted on the Taipower system with encouraging
results.
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